
 Chemuturi Consultants – Do it well or not at all

32-78/3 Sainik Nagar Rama Krishna Puram, Secunderabad - 500056

+91-40-2722 0771 - www.chemuturi.com - murali@chemuturi.com

Productivity for Software Estimators
Murali Chemuturi

1 Introduction

Software estimation, namely, software size, effort, cost and schedule (duration) are often

causing animated discussions among the fraternity of software estimators. Normally, it is

the senior Project Leaders and project Managers who carry out this activity.

Software development consists of a few disparate activities needing specialized

knowledge, namely, in Requirements Gathering, analysis, and Management; Software

Design, Coding, Independent Verification and Validation, Rollout / Deployment /

Installation & Commissioning. Each of these activities is carried out by a differently

skilled person using different tools, having different complexities.

2. Productivity

Productivity is defined as the rate of output for given inputs. Productivity is expressed as

“so many units of output per day” or “so many units or output per hour”.

Productivity is also defined as the ratio of output to input.

For the context of this paper, Productivity is defined as the rate of producing some output

using a set of inputs in a defined time unit.

3. Concerns with Software Size Estimation

The present scenario in the industry is that we have multiple measures, namely,

1. Function Points

2. Use Case Points

3. Object Points

4. Feature Points

5. Internet Points

6. Test Points

7. FPA mark II

8. Lines of Code

9. Etc.

There is no accepted way of converting software size from one measure to another.

One odd aspect of these measures is that the size is adjusted (increase or decrease) due to

factors of complexity etc. A size is something that does not change. For example, a pound

of cheese does not alter if the person weighing is less/more experienced, or the scale is

either a mechanical scale or an electronic one – right?

 Chemuturi Consultants – Do it well or not at all

32-78/3 Sainik Nagar Rama Krishna Puram, Secunderabad - 500056

+91-40-2722 0771 - www.chemuturi.com - murali@chemuturi.com

Or the distance of one mile remains one mile if a young person is walking or an old man

is walking or if it is a freeway or if it is a busy city street.

But the rate of achieving changes – an old man completes one mile slower than the

younger one you go faster on a freeway than on a busy street.

There is no agreement on how to count Lines of Code – logical statements or physical

statements, treatment of inline documentation.

These are some of the issues with size measurement.

4. Concerns with Productivity

The software development world is obsessed with giving one single, empirical, all-

activities-encompassing figure for productivity.

Attempts have been made to give productivity figure as – such as 10 person hours per

Function Point but with a rider that it could vary from 2 to 135 depending on the product

size and other factors.

Some times ranges are given – such as 15 to 30 hours per Use Case Point.

Some times empirical formulae are worked out depending on a set of factors – such as in

COCOMO.

Another aspect is that these productivity figures lump all activities – requirements

analysis, design, review, testing etc – in one single measure. The skill requirements for

these activities are different, the tools used are different, the inputs are different, outputs

are different – lumping them all together under the head “Software Development” and

giving one single figure of productivity at best can only give a very rough estimate but

never an accurate one.

5. The Productivity Path

We have the following activities in software development –

1. Pre-project activities

a. Feasibility study

b. Financial budgeting and approvals for the project

c. Approvals – financial and technical

d. Project go-ahead decision

2. Project startup activities

a. Identifying project manager

b. Allocating project team

c. Setting up development environment

d. Project Planning

 Chemuturi Consultants – Do it well or not at all

32-78/3 Sainik Nagar Rama Krishna Puram, Secunderabad - 500056

+91-40-2722 0771 - www.chemuturi.com - murali@chemuturi.com

e. Setting up various protocols

f. Service level agreements and progress reporting formalities

g. Project related training

3. Software engineering activities

a. User requirements analysis

b. Software requirements analysis

c. Software design

d. Coding and unit testing

e. Testing – integration, functional, negative, system and acceptance

f. Preparing the build and documentation

4. Rollout activities

a. Installing the hardware and system software

b. Setting up database

c. Installing the application software

d. Pilot runs

e. User training

f. Parallel runs

g. Rollover

5. Project cleanup activities

a. Documenting good practices and bad practices

b. Project post mortem

c. Archiving records

d. Releasing resources

e. Releasing the project manager

f. Initiate software maintenance

Now, when we talk of industry thumb rules of productivity, we are not clear as to how

many of the above activities are included in the productivity figure.

Interestingly, no one would like to stake his life on the productivity figure – industry

thumb rule – that is being floating around!!

Look at the nature of these activities –

1. Requirements analysis – here it is understanding what the user needs, wants and

expects and documenting the same so that the software designers understand them

and can design a system strictly in conformance with the stated requirements.

There is a lot of dependence on external factors.

2. Software design – considering the alternatives of hardware, system software and

development platforms, arrive at the optimal one, design an architecture that will

meet the stated requirements and fulfill expectations and yet feasible with the

current technologies and document the design in such a way that the programmers

understand and deliver a product that conforms to the original specifications of

the user. There are quite a few alternatives and this is a strategic activity and

errors here have strategic consequences.

 Chemuturi Consultants – Do it well or not at all

32-78/3 Sainik Nagar Rama Krishna Puram, Secunderabad - 500056

+91-40-2722 0771 - www.chemuturi.com - murali@chemuturi.com

3. Coding – developing software code that conforms to the design and is as failure-

free as possible – it is so easy to leave bugs inside!!

4. Code review – walking thru code written by another programmer and deciphering

the functionality and try to guess the possible errors

5. Testing – trying to unearth all the defects that could be left in the software – it is

an accepted fact that 100% testing is impossible!

Now with such variance in the nature of activities, it is obvious that the productivity of all

these activities is not uniform. The pace of working differs for each of these activities.

These activities do not depend on the amount of software code produced but on other

factors – such as –

1. Requirements depend on the efficiency and clarity of the source of requirements –

users or documentation

2. Design depends on the complexity of processing, alternatives available and

constraints within which the functionality is to be realized

3. Code review depends on the style of coding

4. Testing depends on how well the code is written – more errors are left, it takes

more time to test and re-test

5. Coding itself depends on the quality of design

Therefore, we need to have separate productivity figures for each of these activities.

Drawing a parallel from the manufacturing industry, for punching hole in a sheet –

i. Machine setup

ii. Tool setup

iii. Load job

iv. Punch hole

v. De-burr hole

vi. Clean up

vii. Deliver the sheet for next operation

If multiple holes are punched, “per hole” time comes down, as setup activities are one-

time activities.

If we look at “coding a unit” – the activities could be –

i. Receive instructions

ii. Study the design document

iii. Code the unit

iv. Test & debug the unit for functionality

v. Test & debug the unit for unintended usage

vi. Delete trash code from the unit

vii. Regression test the unit

viii. Release it for next step

 Chemuturi Consultants – Do it well or not at all

32-78/3 Sainik Nagar Rama Krishna Puram, Secunderabad - 500056

+91-40-2722 0771 - www.chemuturi.com - murali@chemuturi.com

Similarly, we can come up with micro activities for each software development phase.

5.1 Empirical or study-based Productivity figures?

Each of these activities has a different rate of achievement. We have to establish standard

times for each of these activities. Then using the Work Study techniques like Synthesis or

Analytical Estimation, we need to arrive at the over all time to complete the job.

Whether we use time study techniques to arrive at individual productivity studies or

gather empirical data – to answer this query, we have to acknowledge that software

development is not totally mechanical in nature nor is it totally creative in nature. Work

Study acknowledges that it is not practical to time activities that have a creative

component. Lots of work is being undertaken in the matter of “white-collar-productivity”

and perhaps future may provide some methods to “time” software development

productivity figures. As of present, empirical data seems to be the solution.

Where do we get data for this? One way is the Time Study using the Industrial

Engineering techniques. Second and more easier, as well as reliable, is from historic data

from the timesheets.

Most timesheet software available and is being used by the industry are oriented towards

payroll and billing rather than capturing data at micro level so that it can be used for

arriving at the productivity data. Most timesheets capture data at two, or three levels

(project is always the first level, second and third can be module & component or

component & activity or a similar combination) in addition to date and time. The

timesheet needs to capture at five levels, namely, project, module, component,

development phase, and the task accomplished – in addition to date and time for each

employee. Thus data would be available to establish productivity data empirically in a

realistic manner.

The present focus is on macro productivity – for all activities of software development.

This needs to change and we need to shift our focus from macro to micro – productivity

for all activities. The way to achieve is to modify our timesheet.

Benefits of productivity at micro level are –

i. Better predictability of software development

ii. Better quality estimates for pricing assistance during project

acquisition/sanction stage

iii. More precise target setting while assigning work, which leads to better morale

in the software developers

iv. More accurate cost estimation

6. Conclusion

 Chemuturi Consultants – Do it well or not at all

32-78/3 Sainik Nagar Rama Krishna Puram, Secunderabad - 500056

+91-40-2722 0771 - www.chemuturi.com - murali@chemuturi.com

The conclusions are that we need to shift focus from macro productivity to micro

productivity; empirical data gathering is preferred for arriving at productivity figures and

that improvement of timesheet is the way forward for computing micro level productivity

figures.

>>>

About the Author:

Murali Chemuturi is a Fellow of Indian Institution of Industrial Engineering and a Senior

Member of Computer society of India. He is a veteran of software development industry

and is presently leading Chemuturi Consultants, which provides consultancy in software

process quality and training. He can be reached at murali@chemuturi.com

